31 research outputs found

    PREDICTION OF RECURRENCE AND MORTALITY OF ORAL TONGUE CANCER USING ARTIFICIAL NEURAL NETWORK (A case study of 5 hospitals in Finland and 1 hospital from Sao Paulo, Brazil)

    Get PDF
    Cancer is a dreadful disease that had caused the death of millions of people. It is characterized by an uncontrollable growth of cell to form lumps or masses of tissue that are known as tumour. Therefore, it is a concern to all and sundry as these tumours mostly release hormones which have negative impact on the body system. Data mining approaches, statistical methods and machine learning algorithms have been proposed for effective cancer data classification. Artificial Neural Networks (ANN) have been used in this thesis for the prediction of recurrence and mortality of oral tongue cancer in patients. Similarly, ANN was also used to examine the diagnostic and prognostic factors. This was aimed at determining which of these diagnostic and prognostics factors had influence on the prediction of recurrence and mortality of oral tongue cancer in patients. Three different ANN have been applied for the learning and testing phases. The aim was to find the most effective technique. They are Elman, Feedforward, and Layer Recurrent neural networks techniques. Elman neural network was not able to make acceptable prediction of the recurrence or the mortality of tongue cancer based on the data. In contrast, Feedforward neural network captured the relationship between the prognostic factors and correctly predicted recurrence. However, it failed to predict the mortality based on the patient's data. Layer Recurrence neural network has been very effective and successfully predicted the recurrence and the mortality of oral tongue cancer in patients. The constructed layered recurrence neural network has been used to investigate the correlation between the prognostic factors. It was found that out of 11 prognostic factors in the data sheet, it was only 5 of them that had considerable impact on the recurrence and mortality. These are grade, depth, budding, modified stage, and gender. Time in months and disease free months were also used to train the network.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Machine learning for prognosis of oral cancer : What are the ethical challenges?

    Get PDF
    Background: Machine learning models have shown high performance, particularly in the diagnosis and prognosis of oral cancer. However, in actual everyday clinical practice, the diagnosis and prognosis using these models remain limited. This is due to the fact that these models have raised several ethical and morally laden dilemmas. Purpose: This study aims to provide a systematic stateof-the-art review of the ethical and social implications of machine learning models in oral cancer management. Methods: We searched the OvidMedline, PubMed, Scopus, Web of Science and Institute of Electrical and Electronics Engineers databases for articles examining the ethical issues of machine learning or artificial intelligence in medicine, healthcare or care providers. The Preferred Reporting Items for Systematic Review and Meta-Analysis was used in the searching and screening processes. Findings: A total of 33 studies examined the ethical challenges of machine learning models or artificial intelligence in medicine, healthcare or diagnostic analytics. Some ethical concerns were data privacy and confidentiality, peer disagreement (contradictory diagnostic or prognostic opinion between the model and the clinician), patient’s liberty to decide the type of treatment to follow may be violated, patients–clinicians’ relationship may change and the need for ethical and legal frameworks. Conclusion: Government, ethicists, clinicians, legal experts, patients’ representatives, data scientists and machine learning experts need to be involved in the development of internationally standardised and structured ethical review guidelines for the machine learning model to be beneficial in daily clinical practice.Copyright © 2020 for this paper by its authors. Use permitted under Creative CommonsLicense Attribution 4.0 International (CC BY 4.0).fi=vertaisarvioitu|en=peerReviewed

    Deep Machine Learning for Oral Cancer : From Precise Diagnosis to Precision Medicine

    Get PDF
    Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide and its incidence is on the rise in many populations. The high incidence rate, late diagnosis, and improper treatment planning still form a significant concern. Diagnosis at an early-stage is important for better prognosis, treatment, and survival. Despite the recent improvement in the understanding of the molecular mechanisms, late diagnosis and approach toward precision medicine for OSCC patients remain a challenge. To enhance precision medicine, deep machine learning technique has been touted to enhance early detection, and consequently to reduce cancer-specific mortality and morbidity. This technique has been reported to have made a significant progress in data extraction and analysis of vital information in medical imaging in recent years. Therefore, it has the potential to assist in the early-stage detection of oral squamous cell carcinoma. Furthermore, automated image analysis can assist pathologists and clinicians to make an informed decision regarding cancer patients. This article discusses the technical knowledge and algorithms of deep learning for OSCC. It examines the application of deep learning technology in cancer detection, image classification, segmentation and synthesis, and treatment planning. Finally, we discuss how this technique can assist in precision medicine and the future perspective of deep learning technology in oral squamous cell carcinoma.© 2022 Alabi, Almangush, Elmusrati and Mäkitie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.fi=vertaisarvioitu|en=peerReviewed

    Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication

    Get PDF
    Background: Machine learning models have been reported to assist in the proper management of cancer through accurate prognostication. Integrating such models as a web-based prognostic tool or calculator may help to improve cancer care and assist clinicians in making oral cancer management-related decisions. However, none of these models have been recommended in daily practices of oral cancer due to concerns related to machine learning methodologies and clinical implementation challenges. An instance of the concerns inherent to the science of machine learning is explainability. Objectives: This study measures the usability and explainability of a machine learning-based web prognostic tool that was designed for prediction of oral tongue cancer. We used the System Usability Scale (SUS) and System Causability Scale (SCS) to evaluate the explainability of the prognostic tool. In addition, we propose a framework for the evaluation of post hoc explainability of web-based prognostic tools. Methods: A SUS- and SCS-based questionnaire was administered amongst pathologists, radiologists, cancer and machine learning researchers and surgeons (n = 11) to evaluate the quality of explanations offered by the machine learning-based web prognostic tool to address the concern of explainability and usability of these models for cancer management. The examined web-based tool was developed by our group and is freely available online. Results: In terms of the usability of the web-based tool using the SUS, 81.9% (45.5% strongly agreed; 36.4% agreed) agreed that neither the support of a technical assistant nor a need to learn many things were required to use the web-based tool. Furthermore, 81.8% agreed that the evaluated web-based tool was not cumbersome to use (usability). The average score for the SCS (explainability) was 0.74. A total of 91.0% of the participants strongly agreed that the web-based tool can assist in clinical decision-making. These scores indicated that the examined web-based tool offers a significant level of usability and explanations about the outcome of interest. Conclusions: Integrating the trained and internally and externally validated model as a web-based tool or calculator is poised to offer an effective and easy approach towards the usage and acceptance of these models in the future daily practice. This approach has received significant attention in recent years. Thus, it is important that the usability and explainability of these models are measured to achieve such touted benefits. A usable and well-explained web-based tool further brings the use of these web-based tools closer to everyday clinical practices. Thus, the concept of more personalized and precision oncology can be achieved

    Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication

    Get PDF
    Background: Machine learning models have been reported to assist in the proper management of cancer through accurate prognostication. Integrating such models as a web-based prognostic tool or calculator may help to improve cancer care and assist clinicians in making oral cancer management-related decisions. However, none of these models have been recommended in daily practices of oral cancer due to concerns related to machine learning methodologies and clinical implementation challenges. An instance of the concerns inherent to the science of machine learning is explainability. Objectives: This study measures the usability and explainability of a machine learning-based web prognostic tool that was designed for prediction of oral tongue cancer. We used the System Usability Scale (SUS) and System Causability Scale (SCS) to evaluate the explainability of the prognostic tool. In addition, we propose a framework for the evaluation of post hoc explainability of web-based prognostic tools. Methods: A SUS- and SCS-based questionnaire was administered amongst pathologists, radiologists, cancer and machine learning researchers and surgeons (n = 11) to evaluate the quality of explanations offered by the machine learning-based web prognostic tool to address the concern of explainability and usability of these models for cancer management. The examined web-based tool was developed by our group and is freely available online. Results: In terms of the usability of the web-based tool using the SUS, 81.9% (45.5% strongly agreed; 36.4% agreed) agreed that neither the support of a technical assistant nor a need to learn many things were required to use the web-based tool. Furthermore, 81.8% agreed that the evaluated web-based tool was not cumbersome to use (usability). The average score for the SCS (explainability) was 0.74. A total of 91.0% of the participants strongly agreed that the web-based tool can assist in clinical decision-making. These scores indicated that the examined web-based tool offers a significant level of usability and explanations about the outcome of interest. Conclusions: Integrating the trained and internally and externally validated model as a web-based tool or calculator is poised to offer an effective and easy approach towards the usage and acceptance of these models in the future daily practice. This approach has received significant attention in recent years. Thus, it is important that the usability and explainability of these models are measured to achieve such touted benefits. A usable and well-explained web-based tool further brings the use of these web-based tools closer to everyday clinical practices. Thus, the concept of more personalized and precision oncology can be achieved.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication

    Get PDF
    Background: Machine learning models have been reported to assist in the proper management of cancer through accurate prognostication. Integrating such models as a web-based prognostic tool or calculator may help to improve cancer care and assist clinicians in making oral cancer management-related decisions. However, none of these models have been recommended in daily practices of oral cancer due to concerns related to machine learning methodologies and clinical implementation challenges. An instance of the concerns inherent to the science of machine learning is explainability. Objectives: This study measures the usability and explainability of a machine learning-based web prognostic tool that was designed for prediction of oral tongue cancer. We used the System Usability Scale (SUS) and System Causability Scale (SCS) to evaluate the explainability of the prognostic tool. In addition, we propose a framework for the evaluation of post hoc explainability of web-based prognostic tools. Methods: A SUS- and SCS-based questionnaire was administered amongst pathologists, radiologists, cancer and machine learning researchers and surgeons (n = 11) to evaluate the quality of explanations offered by the machine learning-based web prognostic tool to address the concern of explainability and usability of these models for cancer management. The examined web-based tool was developed by our group and is freely available online. Results: In terms of the usability of the web-based tool using the SUS, 81.9% (45.5% strongly agreed; 36.4% agreed) agreed that neither the support of a technical assistant nor a need to learn many things were required to use the web-based tool. Furthermore, 81.8% agreed that the evaluated web-based tool was not cumbersome to use (usability). The average score for the SCS (explainability) was 0.74. A total of 91.0% of the participants strongly agreed that the web-based tool can assist in clinical decision-making. These scores indicated that the examined web-based tool offers a significant level of usability and explanations about the outcome of interest. Conclusions: Integrating the trained and internally and externally validated model as a web-based tool or calculator is poised to offer an effective and easy approach towards the usage and acceptance of these models in the future daily practice. This approach has received significant attention in recent years. Thus, it is important that the usability and explainability of these models are measured to achieve such touted benefits. A usable and well-explained web-based tool further brings the use of these web-based tools closer to everyday clinical practices. Thus, the concept of more personalized and precision oncology can be achieved

    Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer

    Get PDF
    Background: The prediction of overall survival in tongue cancer is important for planning of personalized care and patient counselling. Objectives: This study compares the performance of a nomogram with a machine learning model to predict overall survival in tongue cancer. The nomogram and machine learning model were built using a large data set from the Surveillance, Epidemiology, and End Results (SEER) program database. The comparison is necessary to provide the clinicians with a comprehensive, practical, and most accurate assistive system to predict overall survival of this patient population. Methods: The data set used included the records of 7596 tongue cancer patients. The considered machine learning algorithms were logistic regression, support vector machine, Bayes point machine, boosted decision tree, decision forest, and decision jungle. These algorithms were mainly evaluated in terms of the areas under the receiver operating characteristic (ROC) curve (AUC) and accuracy values. The performance of the algorithm that produced the best result was compared with a nomogram to predict overall survival in tongue cancer patients. Results: The boosted decision-tree algorithm outperformed other algorithms. When compared with a nomogram using external validation data, the boosted decision tree produced an accuracy of 88.7% while the nomogram showed an accuracy of 60.4%. In addition, it was found that age of patient, T stage, radiotherapy, and the surgical resection were the most prominent features with significant influence on the machine learning model's performance to predict overall survival. Conclusion: The machine learning model provides more personalized and reliable prognostic information of tongue cancer than the nomogram. However, the level of transparency offered by the nomogram in estimating patients' outcomes seems more confident and strengthened the principle of shared decision making between the patient and clinician. Therefore, a combination of a nomogram - machine learning (NomoML) predictive model may help to improve care, provides information to patients, and facilitates the clinicians in making tongue cancer management-related decisions.Peer reviewe

    Machine learning in oral squamous cell carcinoma: current status, clinical concerns and prospects for future-A systematic review

    Get PDF
    Background: Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. Objectives: This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. Data sources: We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Eligibility criteria: Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Data extraction: Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. Results: A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Conclusion: Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.Peer reviewe

    Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication

    Get PDF
    Background: Machine learning models have been reported to assist in the proper management of cancer through accurate prognostication. Integrating such models as a web-based prognostic tool or calculator may help to improve cancer care and assist clinicians in making oral cancer management-related decisions. However, none of these models have been recommended in daily practices of oral cancer due to concerns related to machine learning methodologies and clinical implementation challenges. An instance of the concerns inherent to the science of machine learning is explainability. Objectives: This study measures the usability and explainability of a machine learning-based web prognostic tool that was designed for prediction of oral tongue cancer. We used the System Usability Scale (SUS) and System Causability Scale (SCS) to evaluate the explainability of the prognostic tool. In addition, we propose a framework for the evaluation of post hoc explainability of web-based prognostic tools. Methods: A SUS- and SCS-based questionnaire was administered amongst pathologists, radiologists, cancer and machine learning researchers and surgeons (n = 11) to evaluate the quality of explanations offered by the machine learning-based web prognostic tool to address the concern of explainability and usability of these models for cancer management. The examined web-based tool was developed by our group and is freely available online. Results: In terms of the usability of the web-based tool using the SUS, 81.9% (45.5% strongly agreed; 36.4% agreed) agreed that neither the support of a technical assistant nor a need to learn many things were required to use the web-based tool. Furthermore, 81.8% agreed that the evaluated web-based tool was not cumbersome to use (usability). The average score for the SCS (explainability) was 0.74. A total of 91.0% of the participants strongly agreed that the web-based tool can assist in clinical decision-making. These scores indicated that the examined web-based tool offers a significant level of usability and explanations about the outcome of interest. Conclusions: Integrating the trained and internally and externally validated model as a web-based tool or calculator is poised to offer an effective and easy approach towards the usage and acceptance of these models in the future daily practice. This approach has received significant attention in recent years. Thus, it is important that the usability and explainability of these models are measured to achieve such touted benefits. A usable and well-explained web-based tool further brings the use of these web-based tools closer to everyday clinical practices. Thus, the concept of more personalized and precision oncology can be achieved
    corecore